Перевод: с русского на все языки

со всех языков на русский

в один поток

  • 1 один поток команд, много потоков данных

    Network technologies: SIMD processor

    Универсальный русско-английский словарь > один поток команд, много потоков данных

  • 2 один поток команд и множество потоков данных

    Network technologies: SIMD

    Универсальный русско-английский словарь > один поток команд и множество потоков данных

  • 3 один поток команд, множество потоков данных

    Network technologies: Single Instruction Multiple Data

    Универсальный русско-английский словарь > один поток команд, множество потоков данных

  • 4 один поток команд-много потоков данных

    General subject: SIMD ((Single Instruction) Multiple Data stream processing; ОКМД; название архитектуры параллельной компьютерной системы, подразумевающей исполнение одной текущей команды несколькими процессорами (число процессо)

    Универсальный русско-английский словарь > один поток команд-много потоков данных

  • 5 перераспределять из нескольких в один поток на заданном расстоянии

    v

    Универсальный русско-немецкий словарь > перераспределять из нескольких в один поток на заданном расстоянии

  • 6 сведение бутылок в один поток

    с
    Flaschenzusammenführung (f)

    Русско-немецкий словарь технических терминов стекольной промышленности > сведение бутылок в один поток

  • 7 ряды демонстрантов слились в один поток

    Русско-латышский словарь > ряды демонстрантов слились в один поток

  • 8 дисконтированный денежный поток

    1. discounted cash flow
    2. DCF

     

    дисконтированный денежный поток
    ДДП

    Будущие величины денежного потока, рассчитанные в текущих денежных единицах, исходя из ожидаемого значения ставки дисконтирования. Метод ДДП (DCF) - один из основных в практике оценки бизнеса.
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > дисконтированный денежный поток

  • 9 мутекс

    General subject: mutex (в Windows, QNX - механизм, используемый для синхронизации доступа (т. е. предотвращения одновременного доступа) к общему ресурсу. В каждый момент времени только один поток может владеть таким ресурсом. Если его по)

    Универсальный русско-английский словарь > мутекс

  • 10 сливаться

    сливать||ся
    1. (в один поток) ἐνώνομαι, συμβάλλω·
    2. перен (о звуках, мыслях и т. п.) ἀνακατεύομαι, συμφύρομαι·
    3. (в одну организацию) συγχωνεύομαι.

    Русско-новогреческий словарь > сливаться

  • 11 флеш-нанопреципитации

    [англ. flash — вспышка, греч. nanosодна миллиардная часть и лат. praecipitatio — сбрасывание, стремительное падение]
    метод создания нагруженных терапевтическими веществами наночастиц (см. наночастицы). Для осуществления Ф.-н. две струи жидкости направляют навстречу друг другу в резервуаре ограниченного объема. При этом один поток состоит из органического растворителя, содержащего лекарственный препарат и контрастное вещество, прикрепленные к длинным цепочкам полимеров подобно бусам, у которых одна половина обладает гидрофильными, а вторая — гидрофобными свойствами. Вторая струя представляет собой чистую воду. При столкновении потоков гидрофобные препараты, контрастные вещества и полимеры выпадают в осадок (преципитируют). Полимеры мгновенно формируют частицы с гидрофильной поверхностью, внутри которых оказываются гидрофобные фрагменты молекул. Подбор концентраций реагентов и скорости смешивания позволяет контролировать размеры формирующихся наночастиц. Гидрофильный слой полимера предотвращает слипание наночастиц и распознавание их иммунной системой, что позволяет им циркулировать в кровотоке. Благодаря гидрофобной внутренней части не происходит быстрой деградации наночастиц в водной среде, но со временем они разрушаются и высвобождают связанный с ними препарат. Размер образующихся наночастиц подбирается таким, что позволяет им легко проходить сквозь неполноценные стенки капилляров быстрорастущих опухолей, не затрагивая нормальные ткани.

    Толковый биотехнологический словарь. Русско-английский. > флеш-нанопреципитации

  • 12 слиться

    сов
    2) ( в один поток) flow [flou] together
    3) ( о реках) join
    4) (о звуках, красках) blend, merge

    Американизмы. Русско-английский словарь. > слиться

  • 13 mesh-connected computer

    многопроцессорная ЭВМ, процессоры которой соединены попарно (многопроцессорная ЭВМ с архитектурой типа "один поток команд, много потоков данных"; её процессоры образуют квадратную матрицу и соединены попарно)

    Англо-русский словарь промышленной и научной лексики > mesh-connected computer

  • 14 вихретоковый преобразователь с аддитивным магнитным потоком

    1. additive magnetic flux probe

     

    вихретоковый преобразователь с аддитивным магнитным потоком
    Вихретоковый преобразователь, в котором один поток возбуждения складывается с другим потоком возбуждения в каждом возбуждающем элементе.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

    Русско-английский словарь нормативно-технической терминологии > вихретоковый преобразователь с аддитивным магнитным потоком

  • 15 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

  • 16 система охлаждения ЦОДа

    1. data center cooling system

     

    система охлаждения ЦОДа
    -
    [Интент]т


    Система охлаждения для небольшого ЦОДа

    Александр Барсков

    Вы­мыш­лен­ная ком­па­ния (далее За­каз­чик) по­про­си­ла пред­ло­жить си­сте­му охла­жде­ния для стро­я­ще­го­ся ком­мер­че­ско­го ЦОДа. В ос­нов­ном зале пла­ни­ру­ет­ся установить:

    • 60 стоек с энер­го­по­треб­ле­ни­ем по 5 кВт (всего 300 кВт) — все эле­мен­ты, необ­хо­ди­мые для обес­пе­че­ния тре­бу­е­мой тем­пе­ра­ту­ры и влаж­но­сти, долж­ны быть уста­нов­ле­ны сразу;
    • 16 стоек с энер­го­по­треб­ле­ни­ем по 20 кВт (всего 320 кВт) — это обо­ру­до­ва­ние будет уста­нав­ли­вать­ся по­сте­пен­но (по мере необ­хо­ди­мо­сти), и сред­ства охла­жде­ния пла­ни­ру­ет­ся раз­вер­ты­вать и за­дей­ство­вать по мере под­клю­че­ния и за­груз­ки стоек.

    За­каз­чик за­явил, что пред­по­чте­ние будет от­да­но энер­го­эф­фек­тив­ным ре­ше­ни­ям, по­это­му же­ла­тель­но за­дей­ство­вать «зе­ле­ные» тех­но­ло­гии, в первую оче­редь фри­ку­линг (есте­ствен­ное охла­жде­ние на­руж­ным воз­ду­хом — free cooling), и предо­ста­вить рас­чет оку­па­е­мо­сти со­от­вет­ству­ю­щей опции (с уче­том того, что объ­ект на­хо­дит­ся в Мос­ков­ской об­ла­сти). Пла­ни­ру­е­мый уро­вень ре­зер­ви­ро­ва­ния — N+1, но воз­мож­ны и дру­гие ва­ри­ан­ты — при на­ли­чии долж­но­го обос­но­ва­ния. Кроме того, За­каз­чик по­про­сил из­на­чаль­но преду­смот­реть сред­ства мо­ни­то­рин­га энер­го­по­треб­ле­ния с целью оп­ти­ми­за­ции рас­хо­да электроэнергии.

    ЧТО ПРО­ГЛЯ­ДЕЛ ЗАКАЗЧИК

    В сфор­му­ли­ро­ван­ной в столь общем виде за­да­че не учтен ряд су­ще­ствен­ных де­та­лей, на ко­то­рые не пре­ми­ну­ли ука­зать экс­пер­ты. Так, Дмит­рий Ча­га­ров, ру­ко­во­ди­тель на­прав­ле­ния вен­ти­ля­ции и кон­ди­ци­о­ни­ро­ва­ния ком­па­нии «Ути­лекс», за­ме­тил, что в за­да­нии ни­че­го не ска­за­но о ха­рак­те­ре на­груз­ки. Он, как и осталь­ные про­ек­ти­ров­щи­ки, ис­хо­дил из пред­по­ло­же­ния, что воз­душ­ный поток на­прав­лен с фрон­таль­ной части стоек назад, но, как из­вест­но, неко­то­рые ком­му­та­то­ры спро­ек­ти­ро­ва­ны для охла­жде­ния сбоку — для них при­дет­ся ис­поль­зо­вать спе­ци­аль­ные бо­ко­вые блоки рас­пре­де­ле­ния воз­душ­но­го потока.

    В за­да­нии ска­за­но о раз­ме­ще­нии всех стоек (5 и 20 кВт) в ос­нов­ном зале, од­на­ко неко­то­рые экс­пер­ты на­сто­я­тель­но ре­ко­мен­ду­ют вы­де­лить от­дель­ную зону для вы­со­ко­на­гру­жен­ных стоек. По сло­вам Алек­сандра Мар­ты­ню­ка, ге­не­раль­но­го ди­рек­то­ра кон­сал­тин­го­вой ком­па­нии «Ди Си квад­рат», «это будет пра­виль­нее и с точки зре­ния про­ек­ти­ро­ва­ния, и с по­зи­ций удоб­ства экс­плу­а­та­ции». Такое вы­де­ле­ние (изо­ля­ция осу­ществ­ля­ет­ся при по­мо­щи вы­го­ро­док) преду­смот­ре­но, на­при­мер, в про­ек­те ком­па­нии «Ком­плит»: Вла­ди­слав Яко­вен­ко, на­чаль­ник от­де­ла ин­фра­струк­тур­ных про­ек­тов, уве­рен, что по­доб­ное ре­ше­ние, во-пер­вых, об­лег­чит об­слу­жи­ва­ние обо­ру­до­ва­ния, а во-вто­рых, поз­во­лит ис­поль­зо­вать раз­лич­ные тех­но­ло­гии хо­ло­до­снаб­же­ния в раз­ных зонах. Впро­чем, боль­шин­ство про­ек­ти­ров­щи­ков не ис­пы­та­ли осо­бых про­блем при ре­ше­нии за­да­чи по от­во­ду тепла от стоек 5 и 20 кВт, уста­нов­лен­ных в одном помещении.

    Один из пер­вых во­про­сов, с ко­то­рым За­каз­чик об­ра­тил­ся к бу­ду­ще­му парт­не­ру, был свя­зан с фаль­шпо­лом: «Необ­хо­дим ли он во­об­ще, и если нужен, то какой вы­со­ты?». Алек­сандр Мар­ты­нюк ука­зал, что гра­мот­ный рас­чет вы­со­ты фаль­шпо­ла воз­мо­жен толь­ко при усло­вии предо­став­ле­ния до­пол­ни­тель­ной ин­фор­ма­ции: о типе стоек (как в них будет ор­га­ни­зо­ва­на по­да­ча охла­жда­ю­ще­го воз­ду­ха?); об ор­га­ни­за­ции ка­бель­ной про­вод­ки (под полом или по­тол­ком? сколь­ко ка­бе­лей? ка­ко­го диа­мет­ра?); об осо­бен­но­стях по­ме­ще­ния (вы­со­та по­тол­ков, со­от­но­ше­ние длин стен, на­ли­чие вы­сту­пов и опор­ных ко­лонн) и т. д. Он со­ве­ту­ет вы­пол­нить тем­пе­ра­тур­но-кли­ма­ти­че­ское мо­де­ли­ро­ва­ние по­ме­ще­ния с уче­том вы­ше­пе­ре­чис­лен­ных па­ра­мет­ров и, если по­тре­бу­ет­ся, уточ­ня­ю­щих дан­ных. В ре­зуль­та­те можно будет под­го­то­вить ре­ко­мен­да­ции в от­но­ше­нии оп­ти­маль­ной вы­со­ты фаль­шпо­ла, а также дать оцен­ку це­ле­со­об­раз­но­сти раз­ме­ще­ния в одном зале стоек с раз­ной энергонагруженностью.

    Что ж, мы дей­стви­тель­но не предо­ста­ви­ли всей ин­фор­ма­ции, необ­хо­ди­мой для по­доб­но­го мо­де­ли­ро­ва­ния, и про­ек­ти­ров­щи­кам при­ш­лось до­воль­ство­вать­ся скуд­ны­ми ис­ход­ны­ми дан­ны­ми. И все же, на­де­ем­ся, пред­став­лен­ные ре­ше­ния ока­жут­ся ин­те­рес­ны­ми и по­лез­ны­ми ши­ро­ко­му кругу за­каз­чи­ков. Им оста­нет­ся толь­ко «по­до­гнать» ре­ше­ния «под себя».

    «КЛАС­СИ­КА» ОХЛАЖДЕНИЯ

    Для сня­тия тепла со стоек при на­груз­ке 5 кВт боль­шин­ство про­ек­ти­ров­щи­ков пред­ло­жи­ли самый рас­про­стра­нен­ный на се­год­ня ва­ри­ант — уста­нов­ку шкаф­ных пре­ци­зи­он­ных кон­ди­ци­о­не­ров, по­да­ю­щих хо­лод­ный воз­дух в про­стран­ство под фаль­шпо­лом. Под­вод воз­ду­ха к обо­ру­до­ва­нию осу­ществ­ля­ет­ся в зоне хо­лод­ных ко­ри­до­ров через пер­фо­ри­ро­ван­ные плиты или воз­ду­хо­рас­пре­де­ли­тель­ные ре­шет­ки фаль­шпо­ла, а отвод воз­ду­ха от кон­ди­ци­о­не­ров — из зоны го­ря­чих ко­ри­до­ров через верх­нюю часть зала или про­стран­ство на­вес­но­го по­тол­ка (см. Рисунок 1). Такая схема может быть ре­а­ли­зо­ва­на толь­ко при на­ли­чии фаль­шпо­ла до­ста­точ­ной высоты

    5134

    В во­про­се вы­бо­ра места для уста­нов­ки шкаф­ных кон­ди­ци­о­не­ров един­ство мне­ний от­сут­ству­ет, мно­гие ука­за­ли на воз­мож­ность их раз­ме­ще­ния как в сер­вер­ном зале, так и в со­сед­нем по­ме­ще­нии. Алек­сей Кар­пин­ский, ди­рек­тор де­пар­та­мен­та ин­же­нер­ных си­стем ком­па­нии «Асте­рос», уве­рен, что для низ­ко­на­гру­жен­ных стоек луч­шим ре­ше­ни­ем будет вынос «тя­же­лой ин­же­не­рии» за пре­де­лы сер­вер­но­го зала (см. Рисунок 2) — тогда для об­слу­жи­ва­ния кон­ди­ци­о­не­ров внутрь зала вхо­дить не при­дет­ся. «Это по­вы­ша­ет на­деж­ность ра­бо­ты обо­ру­до­ва­ния, ведь, как из­вест­но, наи­бо­лее часто оно вы­хо­дит из строя вслед­ствие че­ло­ве­че­ско­го фак­то­ра, — объ­яс­ня­ет он. — При­чем по­ме­ще­ние с кон­ди­ци­о­не­ра­ми может быть со­вер­шен­но не свя­зан­ным с ма­шин­ным залом и рас­по­ла­гать­ся, на­при­мер, через ко­ри­дор или на дру­гом этаже».

    5135

    Если стой­ки мощ­но­стью 5 и 20 кВт уста­нав­ли­ва­ют­ся в одном по­ме­ще­нии, Алек­сандр Ласый, за­ме­сти­тель ди­рек­то­ра де­пар­та­мен­та ин­тел­лек­ту­аль­ных зда­ний ком­па­нии «Крок», ре­ко­мен­ду­ет ор­га­ни­зо­вать фи­зи­че­ское раз­де­ле­ние го­ря­чих и хо­лод­ных ко­ри­до­ров. В си­ту­а­ции, когда для вы­со­ко­на­гру­жен­ных стоек вы­де­ля­ет­ся от­дель­ное по­ме­ще­ние, по­доб­но­го раз­де­ле­ния для стоек на 5 кВт не требуется.

    ФРЕОН ИЛИ ВОДА

    Шкаф­ные кон­ди­ци­о­не­ры на рынке пред­став­ле­ны как во фре­о­но­вом ис­пол­не­нии, так и в ва­ри­ан­тах с во­дя­ным охла­жде­ни­ем. При ис­поль­зо­ва­нии фре­о­но­вых кон­ди­ци­о­не­ров на крыше или при­ле­га­ю­щей тер­ри­то­рии необ­хо­ди­мо преду­смот­реть место для уста­нов­ки кон­ден­са­тор­ных бло­ков, а при во­дя­ном охла­жде­нии по­тре­бу­ет­ся место под на­сос­ную и во­до­охла­жда­ю­щие ма­ши­ны (чиллеры).

    Спе­ци­а­ли­сты ком­па­нии «АМД­тех­но­ло­гии» пред­ста­ви­ли За­каз­чи­ку срав­не­ние раз­лич­ных ва­ри­ан­тов фре­о­но­вых и во­дя­ных си­стем кон­ди­ци­о­ни­ро­ва­ния. Наи­бо­лее бюд­жет­ный ва­ри­ант преду­смат­ри­ва­ет уста­нов­ку обыч­ных шкаф­ных фре­о­но­вых кон­ди­ци­о­не­ров HPM M50 UA с по­да­чей хо­лод­но­го воз­ду­ха под фаль­шпол. При­мер­но на чет­верть до­ро­же обой­дут­ся мо­де­ли кон­ди­ци­о­не­ров с циф­ро­вым спи­раль­ным ком­прес­со­ром и элек­трон­ным тер­мо­рас­ши­ри­тель­ным вен­ти­лем (HPM D50 UA, Digital). Мощ­ность кон­ди­ци­о­не­ров ре­гу­ли­ру­ет­ся в за­ви­си­мо­сти от тем­пе­ра­ту­ры в по­ме­ще­нии, это поз­во­ля­ет до­бить­ся 12-про­цент­ной эко­но­мии элек­тро­энер­гии, а также умень­шить ко­ли­че­ство пусков и оста­но­ва ком­прес­со­ра, что по­вы­ша­ет срок служ­бы си­сте­мы. В слу­чае от­сут­ствия на объ­ек­те фаль­шпо­ла (или его недо­ста­точ­ной вы­со­ты) пред­ло­жен более до­ро­гой по на­чаль­ным вло­же­ни­ям, но эко­но­мич­ный в экс­плу­а­та­ции ва­ри­ант с внут­ри­ряд­ны­ми фре­о­но­вы­ми кондиционерами.

    Как по­ка­зы­ва­ет пред­став­лен­ный ана­лиз, фре­о­но­вые кон­ди­ци­о­не­ры менее эф­фек­тив­ны по срав­не­нию с си­сте­мой во­дя­но­го охла­жде­ния. При этом, о чем на­по­ми­на­ет Вик­тор Гав­ри­лов, тех­ни­че­ский ди­рек­тор «АМД­тех­но­ло­гий», фре­о­но­вая си­сте­ма имеет огра­ни­че­ние по длине тру­бо­про­во­да и пе­ре­па­ду высот между внут­рен­ни­ми и на­руж­ны­ми бло­ка­ми (эк­ви­ва­лент­ная общая длина трас­сы фре­о­но­про­во­да не долж­на пре­вы­шать 50 м, а ре­ко­мен­ду­е­мый пе­ре­пад по вы­со­те — 30 м); у во­дя­ной си­сте­мы таких огра­ни­че­ний нет, по­это­му ее можно при­спо­со­бить к любым осо­бен­но­стям зда­ния и при­ле­га­ю­щей тер­ри­то­рии. Важно также пом­нить, что при при­ме­не­нии фре­о­но­вой си­сте­мы пер­спек­ти­вы раз­ви­тия (уве­ли­че­ние плот­но­сти энер­го­по­треб­ле­ния) су­ще­ствен­но огра­ни­че­ны, тогда как при за­клад­ке необ­хо­ди­мой ин­фра­струк­ту­ры по­да­чи хо­лод­ной воды к стой­кам (тру­бо­про­во­ды, на­со­сы, ар­ма­ту­ра) на­груз­ку на стой­ку можно впо­след­ствии уве­ли­чи­вать до 30 кВт и выше, не при­бе­гая к ка­пи­таль­ной ре­кон­струк­ции сер­вер­но­го помещения.

    К фак­то­рам, ко­то­рые могут опре­де­лить выбор в поль­зу фре­о­но­вых кон­ди­ци­о­не­ров, можно от­не­сти от­сут­ствие места на улице (на­при­мер из-за невоз­мож­но­сти обес­пе­чить по­жар­ный про­езд) или на кров­ле (вслед­ствие осо­бен­но­стей кон­струк­ции или ее недо­ста­точ­ной несу­щей спо­соб­но­сти) для мон­та­жа мо­но­блоч­ных чил­ле­ров на­руж­ной уста­нов­ки. При этом боль­шин­ство экс­пер­тов еди­но­душ­но вы­ска­зы­ва­ют мне­ние, что при ука­зан­ных мощ­но­стях ре­ше­ние на воде эко­но­ми­че­ски це­ле­со­об­раз­нее и проще в ре­а­ли­за­ции. Кроме того, при ис­поль­зо­ва­нии воды и/или эти­лен­гли­ко­ле­вой смеси в ка­че­стве хо­ло­до­но­си­те­ля можно за­дей­ство­вать ти­по­вые функ­ции фри­ку­лин­га в чиллерах.

    Впро­чем, функ­ции фри­ку­лин­га воз­мож­но за­дей­ство­вать и во фре­о­но­вых кон­ди­ци­о­не­рах. Такие ва­ри­ан­ты ука­за­ны в пред­ло­же­ни­ях ком­па­ний RC Group и «Ин­же­нер­ное бюро ’’Хос­сер‘‘», где ис­поль­зу­ют­ся фре­о­но­вые кон­ди­ци­о­не­ры со встро­ен­ны­ми кон­ден­са­то­ра­ми во­дя­но­го охла­жде­ния и внеш­ни­ми теп­ло­об­мен­ни­ка­ми с функ­ци­ей фри­ку­лин­га (сухие гра­дир­ни). Спе­ци­а­ли­сты RC Group сразу от­ка­за­лись от ва­ри­ан­та с уста­нов­кой кон­ди­ци­о­не­ров с вы­нос­ны­ми кон­ден­са­то­ра­ми воз­душ­но­го охла­жде­ния, по­сколь­ку он не со­от­вет­ству­ет тре­бо­ва­нию За­каз­чи­ка за­дей­ство­вать режим фри­ку­лин­га. По­ми­мо уже на­зван­но­го они пред­ло­жи­ли ре­ше­ние на ос­но­ве кон­ди­ци­о­не­ров, ра­бо­та­ю­щих на охла­жден­ной воде. Ин­те­рес­но от­ме­тить, что и про­ек­ти­ров­ши­ки «Ин­же­нер­но­го бюро ’’Хос­сер‘‘» раз­ра­бо­та­ли вто­рой ва­ри­ант на воде.

    Если ком­па­ния «АМД­тех­но­ло­гии» пред­ло­жи­ла для стоек на 5 кВт ре­ше­ние на базе внут­ри­ряд­ных кон­ди­ци­о­не­ров толь­ко как один из воз­мож­ных ва­ри­ан­тов, то APC by Schneider Electric (см. Ри­су­нок 3), а также один из парт­не­ров этого про­из­во­ди­те­ля, ком­па­ния «Ути­лекс», от­да­ют пред­по­чте­ние кон­ди­ци­о­не­рам, уста­нав­ли­ва­е­мым в ряды стоек. В обоих ре­ше­ни­ях пред­ло­же­но изо­ли­ро­вать го­ря­чий ко­ри­дор с по­мо­щью си­сте­мы HACS (см. Ри­су­нок 4). «Для эф­фек­тив­но­го охла­жде­ния необ­хо­ди­мо сни­зить по­те­ри при транс­пор­ти­ров­ке хо­лод­но­го воз­ду­ха, по­это­му си­сте­мы кон­ди­ци­о­ни­ро­ва­ния лучше уста­но­вить рядом с на­груз­кой. Раз­ме­ще­ние кон­ди­ци­о­не­ров в от­дель­ном по­ме­ще­нии — такая мо­дель при­ме­ня­лась в со­вет­ских вы­чис­ли­тель­ных цен­трах — в дан­ном слу­чае менее эф­фек­тив­но», — счи­та­ет Дмит­рий Ча­га­ров. В слу­чае ис­поль­зо­ва­ния внут­ри­ряд­ных кон­ди­ци­о­не­ров фаль­шпол уже не яв­ля­ет­ся необ­хо­ди­мо­стью, хотя в про­ек­те «Ути­лек­са» он преду­смот­рен — для про­клад­ки трасс хо­ло­до­снаб­же­ния, элек­тро­пи­та­ния и СКС.

    Ми­ха­ил Бал­ка­ров, си­стем­ный ин­же­нер ком­па­нии APC by Schneider Electric, от­ме­ча­ет, что при от­сут­ствии фаль­шпо­ла трубы можно про­ло­жить либо в штро­бах, либо свер­ху, преду­смот­рев до­пол­ни­тель­ный уро­вень за­щи­ты в виде лот­ков или ко­ро­бов для кон­тро­ли­ру­е­мо­го слива воз­мож­ных про­те­чек. Если же фаль­шпол преду­смат­ри­ва­ет­ся, то его ре­ко­мен­ду­е­мая вы­со­та со­став­ля­ет не менее 40 см — из со­об­ра­же­ний удоб­ства про­клад­ки труб.

    ЧИЛ­ЛЕР И ЕГО «ОБВЯЗКА»

    В боль­шин­стве про­ек­тов преду­смат­ри­ва­ет­ся уста­нов­ка внеш­не­го чил­ле­ра и ор­га­ни­за­ция двух­кон­тур­ной си­сте­мы хо­ло­до­снаб­же­ния. Во внеш­нем кон­ту­ре, свя­зы­ва­ю­щем чил­ле­ры и про­ме­жу­точ­ные теп­ло­об­мен­ни­ки, хо­ло­до­но­си­те­лем слу­жит вод­ный рас­твор эти­лен­гли­ко­ля, а во внут­рен­нем — между теп­ло­об­мен­ни­ка­ми и кон­ди­ци­о­не­ра­ми (шкаф­ны­ми и/или внут­ри­ряд­ны­ми) — цир­ку­ли­ру­ет уже чи­стая вода. Необ­хо­ди­мость ис­поль­зо­ва­ния эти­лен­гли­ко­ля во внеш­нем кон­ту­ре легко объ­яс­ни­ма — это ве­ще­ство зимой не за­мер­за­ет. У За­каз­чи­ка воз­ник ре­зон­ный во­прос: зачем нужен вто­рой кон­тур, и по­че­му нель­зя ор­га­ни­зо­вать всего один — ведь в этом слу­чае КПД будет выше?

    По сло­вам Вла­ди­сла­ва Яко­вен­ко, двух­кон­тур­ная схема поз­во­ля­ет сни­зить объем до­ро­го­го хо­ло­до­но­си­те­ля (эти­лен­гли­ко­ля) и яв­ля­ет­ся более эко­ло­гич­ной. Эти­лен­гли­коль — ядо­ви­тое, хи­ми­че­ски ак­тив­ное ве­ще­ство, и если про­теч­ка слу­чит­ся внут­ри по­ме­ще­ния ЦОД, лик­ви­да­ция по­след­ствий такой ава­рии ста­нет се­рьез­ной про­бле­мой для служ­бы экс­плу­а­та­ции. Сле­ду­ет также учи­ты­вать, что при со­дер­жа­нии гли­ко­ля в рас­тво­ре хо­ло­до­но­си­те­ля на уровне 40% по­тре­бу­ют­ся более мощ­ные на­со­сы (из-за вы­со­кой вяз­ко­сти рас­тво­ра), по­это­му по­треб­ле­ние энер­гии и, со­от­вет­ствен­но, экс­плу­а­та­ци­он­ные рас­хо­ды уве­ли­чат­ся. На­ко­нец, тре­бо­ва­ние к мон­та­жу си­сте­мы без гли­ко­ля го­раз­до ниже, а экс­плу­а­ти­ро­вать ее проще.

    При ис­поль­зо­ва­нии чил­ле­ров функ­цию «бес­пе­ре­бой­но­го охла­жде­ния» ре­а­ли­зо­вать до­воль­но про­сто: при воз­ник­но­ве­нии пе­ре­бо­ев с по­да­чей элек­тро­энер­гии си­сте­ма спо­соб­на обес­пе­чить охла­жде­ние сер­вер­ной до за­пус­ка ди­зе­ля или кор­рект­но­го вы­клю­че­ния сер­ве­ров за счет хо­лод­ной воды, за­па­сен­ной в ба­ках-ак­ку­му­ля­то­рах. Как от­ме­ча­ет Вик­тор Гав­ри­лов, ре­а­ли­за­ция по­доб­ной схемы поз­во­ля­ет удер­жать из­ме­не­ние гра­ди­ен­та тем­пе­ра­ту­ры в до­пу­сти­мых пре­де­лах (ве­ду­щие про­из­во­ди­те­ли сер­ве­ров тре­бу­ют, чтобы ско­рость из­ме­не­ния тем­пе­ра­ту­ры со­став­ля­ла не более 50С/час, а уве­ли­че­ние этой ско­ро­сти может при­ве­сти к по­лом­ке сер­вер­но­го обо­ру­до­ва­ния, что осо­бен­но часто про­ис­хо­дит при воз­об­нов­ле­нии охла­жде­ния в ре­зуль­та­те рез­ко­го сни­же­ния тем­пе­ра­ту­ры). При про­па­да­нии элек­тро­пи­та­ния для под­дер­жа­ния ра­бо­ты чил­лер­ной си­сте­мы кон­ди­ци­о­ни­ро­ва­ния необ­хо­ди­мо толь­ко обес­пе­чить функ­ци­о­ни­ро­ва­ние пе­ре­ка­чи­ва­ю­щих на­со­сов и вен­ти­ля­то­ров кон­ди­ци­о­не­ров — по­треб­ле­ние от ИБП сво­дит­ся к ми­ни­му­му. Для клас­си­че­ских фре­о­но­вых си­стем необ­хо­ди­мо обес­пе­чить пи­та­ни­ем весь ком­плекс це­ли­ком (при этом все ком­прес­со­ры долж­ны быть осна­ще­ны функ­ци­ей «мяг­ко­го за­пус­ка»), по­это­му тре­бу­ют­ся кон­ди­ци­о­не­ры и ИБП более до­ро­гой комплектации.

    КОГДА РАС­ТЕТ ПЛОТНОСТЬ

    Боль­шин­ство пред­ло­жен­ных За­каз­чи­ку ре­ше­ний для охла­жде­ния вы­со­ко­на­гру­жен­ных стоек (20 кВт) преду­смат­ри­ва­ет ис­поль­зо­ва­ние внут­ри­ряд­ных кон­ди­ци­о­не­ров. Как по­ла­га­ет Алек­сандр Ласый, ос­нов­ная слож­ность при от­во­де от стой­ки 20 кВт тепла с по­мо­щью клас­си­че­ской схемы охла­жде­ния, ба­зи­ру­ю­щей­ся на шкаф­ных кон­ди­ци­о­не­рах, свя­за­на с по­да­чей охла­жден­но­го воз­ду­ха из-под фаль­шполь­но­го про­стран­ства и до­став­кой его до теп­ло­вы­де­ля­ю­ще­го обо­ру­до­ва­ния. «Зна­чи­тель­ные пе­ре­па­ды дав­ле­ния на пер­фо­ри­ро­ван­ных ре­шет­ках фаль­шпо­ла и вы­со­кие ско­ро­сти дви­же­ния воз­ду­ха со­зда­ют нерав­но­мер­ный воз­душ­ный поток в зоне перед стой­ка­ми даже при раз­де­ле­нии го­ря­чих и хо­лод­ных ко­ри­до­ров, — от­ме­ча­ет он. — Это при­во­дит к нерав­но­мер­но­му охла­жде­нию стоек и их пе­ре­гре­ву. В слу­чае пе­ре­мен­ной за­груз­ки стоек воз­ни­ка­ет необ­хо­ди­мость пе­ре­на­стра­и­вать си­сте­му воз­ду­хо­рас­пре­де­ле­ния через фаль­шпол, что до­воль­но затруднительно».

    Впро­чем, неко­то­рые ком­па­нии «риск­ну­ли» пред­ло­жить для стоек на 20 кВт си­сте­му, ос­но­ван­ную на тех же прин­ци­пах, что при­ме­ня­ют­ся для стоек на 5кВт, — по­да­чей хо­лод­но­го воз­ду­ха под фаль­шпол. По сло­вам Сер­гея Бон­да­ре­ва, ру­ко­во­ди­те­ля от­де­ла про­даж «Вайсс Кли­ма­тех­ник», его опыт по­ка­зы­ва­ет, что уста­нов­ка до­пол­ни­тель­ных ре­ше­ток во­круг стой­ки для уве­ли­че­ния пло­ща­ди се­че­ния, через ко­то­рое по­сту­па­ет хо­лод­ный воз­дух (а зна­чит и его объ­е­ма), поз­во­ля­ет сни­мать теп­ло­вую на­груз­ку в 20 кВт. Ре­ше­ние этой ком­па­нии от­ли­ча­ет­ся от дру­гих про­ек­тов ре­а­ли­за­ци­ей фри­ку­лин­га: кон­струк­ция кон­ди­ци­о­не­ров Deltaclima FC про­из­вод­ства Weiss Klimatechnik поз­во­ля­ет под­во­дить к ним хо­лод­ный воз­дух прямо с улицы.

    Ин­те­рес­ное ре­ше­ние пред­ло­жи­ла ком­па­ния «Юни­Конд», парт­нер ита­льян­ской Uniflair: клас­си­че­ская си­сте­ма охла­жде­ния через фаль­шпол до­пол­ня­ет­ся обо­ру­до­ван­ны­ми вен­ти­ля­то­ра­ми мо­ду­ля­ми «ак­тив­но­го пола», ко­то­рые уста­нав­ли­ва­ют­ся вме­сто обыч­ных пли­ток фаль­шпо­ла. По утвер­жде­нию спе­ци­а­ли­стов «Юни­Конд», такие мо­ду­ли поз­во­ля­ют су­ще­ствен­но уве­ли­чить объ­е­мы ре­гу­ли­ру­е­мых по­то­ков воз­ду­ха: до 4500 м3/час вме­сто 800–1000 м3/час от обыч­ной ре­шет­ки 600х600 мм. Они также от­ме­ча­ют, что про­сто уста­но­вить вен­ти­ля­тор в под­поль­ном про­стран­стве недо­ста­точ­но для обес­пе­че­ния га­ран­ти­ро­ван­но­го охла­жде­ния сер­вер­ных стоек. Важно пра­виль­но ор­га­ни­зо­вать воз­душ­ный поток как по дав­ле­нию, так и по на­прав­ле­нию воз­ду­ха, чтобы обес­пе­чить по­да­чу воз­ду­ха не толь­ко в верх­нюю часть стой­ки, но и, в слу­чае необ­хо­ди­мо­сти, в ее ниж­нюю часть. Для этого па­нель «ак­тив­но­го пола» по­ми­мо вен­ти­ля­то­ра ком­плек­ту­ет­ся про­цес­со­ром, дат­чи­ка­ми тем­пе­ра­ту­ры и по­во­рот­ны­ми ла­ме­ля­ми (см. Ри­су­нок 5). При­ме­не­ние мо­ду­лей «ак­тив­но­го пола» без до­пол­ни­тель­ной изо­ля­ции по­то­ков воз­ду­ха поз­во­ля­ет уве­ли­чить мощ­ность стой­ки до 15 кВт, а при гер­ме­ти­за­ции хо­лод­но­го ко­ри­до­ра (в «Юни­Конд» это ре­ше­ние на­зы­ва­ют «хо­лод­ным бас­сей­ном») — до 25 кВт.

    5136

    Как уже го­во­ри­лось, боль­шин­ство про­ек­ти­ров­щи­ков ре­ко­мен­до­ва­ли для стоек на 20 кВт си­сте­мы с внут­ри­ряд­ным охла­жде­ни­ем и изо­ля­цию по­то­ков го­ря­че­го и хо­лод­но­го воз­ду­ха. Как от­ме­ча­ет Алек­сандр Ласый, ис­поль­зо­ва­ние вы­со­ко­на­гру­жен­ных стоек в со­че­та­нии с внут­ри­ряд­ны­ми кон­ди­ци­о­не­ра­ми поз­во­ля­ет уве­ли­чить плот­ность раз­ме­ще­ния сер­вер­но­го обо­ру­до­ва­ния и со­кра­тить про­стран­ство (ко­ри­до­ры, про­хо­ды) для его об­слу­жи­ва­ния. Вза­им­ное рас­по­ло­же­ние сер­вер­ных стоек и кон­ди­ци­о­не­ров в этом слу­чае сво­дит к ми­ни­му­му нерав­но­мер­ность рас­пре­де­ле­ния хо­ло­да в ава­рий­ной ситуации.

    Выбор раз­лич­ных ва­ри­ан­тов за­кры­той ар­хи­тек­ту­ры цир­ку­ля­ции воз­ду­ха пред­ло­жи­ла ком­па­ния «Асте­рос»: от изо­ля­ции хо­лод­но­го (ре­ше­ние от Knuеrr и Emerson) или го­ря­че­го ко­ри­до­ра (APC) до изо­ля­ции воз­душ­ных по­то­ков на уровне стой­ки (Rittal, APC, Emerson, Knuеrr). При­чем, как от­ме­ча­ет­ся в про­ек­те, 16 вы­со­ко­на­гру­жен­ных стоек можно раз­ме­стить и в от­дель­ном по­ме­ще­нии, и в общем зале. В ка­че­стве ва­ри­ан­тов кон­ди­ци­о­нер­но­го обо­ру­до­ва­ния спе­ци­а­ли­сты «Асте­рос» рас­смот­ре­ли воз­мож­ность уста­нов­ки внут­ри­ряд­ных кон­ди­ци­о­не­ров APC InRowRP/RD (с изо­ля­ци­ей го­ря­че­го ко­ри­до­ра), Emerson CR040RC и за­кры­тых ре­ше­ний на базе обо­ру­до­ва­ния Knuеrr CoolLoop — во всех этих слу­ча­ях обес­пе­чи­ва­ет­ся ре­зер­ви­ро­ва­ние на уровне ряда по схеме N+1. Еще один ва­ри­ант — ряд­ные кон­ди­ци­о­не­ры LCP ком­па­нии Rittal, со­сто­я­щие из трех охла­жда­ю­щих мо­ду­лей, каж­дый из ко­то­рых можно за­ме­нить в «го­ря­чем» ре­жи­ме. В пол­ной мере до­ка­зав свою «вен­до­ро­не­за­ви­си­мость», ин­те­гра­то­ры «Асте­рос» все же от­ме­ти­ли, что при ис­поль­зо­ва­нии мо­но­брен­до­во­го ре­ше­ния, на­при­мер на базе про­дук­тов Emerson, все эле­мен­ты могут быть объ­еди­не­ны в еди­ную ло­каль­ную сеть, что поз­во­лит оп­ти­ми­зи­ро­вать ра­бо­ту си­сте­мы и сни­зить рас­ход энергии.

    Как по­ла­га­ют в «Асте­рос», раз­ме­щать тру­бо­про­во­ды в под­по­то­лоч­ной зоне неже­ла­тель­но, по­сколь­ку при на­ли­чии под­вес­но­го по­тол­ка об­на­ру­жить и предот­вра­тить про­теч­ку и об­ра­зо­ва­ние кон­ден­са­та очень слож­но. По­это­му они ре­ко­мен­ду­ют обу­стро­ить фаль­шпол вы­со­той до 300 мм — этого до­ста­точ­но для про­клад­ки ка­бель­ной про­дук­ции и тру­бо­про­во­дов хо­ло­до­снаб­же­ния. Так же как и в ос­нов­ном полу, здесь необ­хо­ди­мо преду­смот­реть сред­ства для сбора жид­ко­сти при воз­ник­но­ве­нии ава­рий­ных си­ту­а­ций (гид­ро­изо­ля­ция, при­ям­ки, разу­к­лон­ка и т. д.).

    Как и шкаф­ные кон­ди­ци­о­не­ры, внут­ри­ряд­ные до­вод­чи­ки вы­пус­ка­ют­ся не толь­ко в во­дя­ном, но и во фре­о­но­вом ис­пол­не­нии. На­при­мер, но­вин­ка ком­па­нии RC Group — внут­ри­ряд­ные си­сте­мы охла­жде­ния Coolside — по­став­ля­ет­ся в сле­ду­ю­щих ва­ри­ан­тах: с фре­о­но­вы­ми внут­рен­ни­ми бло­ка­ми, с внут­рен­ни­ми бло­ка­ми на охла­жден­ной воде, с одним на­руж­ным и одним внут­рен­ним фре­о­но­вым бло­ком, а также с одним на­руж­ным и несколь­ки­ми внут­рен­ни­ми фре­о­но­вы­ми бло­ка­ми. Учи­ты­вая по­же­ла­ние За­каз­чи­ка от­но­си­тель­но энер­го­сбе­ре­же­ния, для дан­но­го про­ек­та вы­бра­ны си­сте­мы Coolside, ра­бо­та­ю­щие на охла­жден­ной воде, по­лу­ча­е­мой от чил­ле­ра. Число чил­ле­ров, уста­нов­лен­ных на пер­вом этапе про­ек­та, при­дет­ся вдвое увеличить.

    Для вы­со­ко­плот­ных стоек ком­па­ния «АМД­тех­но­ло­гии» раз­ра­бо­та­ла несколь­ко ва­ри­ан­тов ре­ше­ний — в за­ви­си­мо­сти от кон­цеп­ции, при­ня­той для стоек на 5 кВт. Если За­каз­чик вы­бе­рет бюд­жет­ный ва­ри­ант (фре­о­но­вые кон­ди­ци­о­не­ры), то в стой­ках на 20 кВт пред­ла­га­ет­ся уста­но­вить ряд­ные кон­ди­ци­о­не­ры-до­вод­чи­ки XDH, а в ка­че­стве хо­ло­диль­ной ма­ши­ны — чил­лер внут­рен­ней уста­нов­ки с вы­нос­ны­ми кон­ден­са­то­ра­ми XDC, обес­пе­чи­ва­ю­щий цир­ку­ля­цию хо­ло­до­но­си­те­ля для до­вод­чи­ков XDH. Если же За­каз­чик с са­мо­го на­ча­ла ори­ен­ти­ру­ет­ся на чил­ле­ры, то ре­ко­мен­ду­ет­ся до­ба­вить еще один чил­лер SBH 030 и также ис­поль­зо­вать кон­ди­ци­о­не­ры-до­вод­чи­ки XDH. Чтобы «раз­вя­зать» чил­лер­ную воду и фреон 134, ис­поль­зу­е­мый кон­ди­ци­о­не­ра­ми XDH, при­ме­ня­ют­ся спе­ци­аль­ные гид­рав­ли­че­ские мо­ду­ли XDP (см. Рисунок 6).

    5137

    Спе­ци­а­ли­сты са­мо­го про­из­во­ди­те­ля — ком­па­нии Emerson Network — преду­смот­ре­ли толь­ко один ва­ри­ант, ос­но­ван­ный на раз­ви­тии чил­лер­ной си­сте­мы, пред­ло­жен­ной для стоек на 5 кВт. Они от­ме­ча­ют, что ис­поль­зо­ва­ние в си­сте­ме Liebert XD фрео­на R134 ис­клю­ча­ет ввод воды в по­ме­ще­ние ЦОД. В ос­но­ву ра­бо­ты этой си­сте­мы по­ло­же­но свой­ство жид­ко­стей по­гло­щать тепло при ис­па­ре­нии. Жид­кий хо­ло­до­но­си­тель, на­гне­та­е­мый на­со­сом, ис­па­ря­ет­ся в теп­ло­об­мен­ни­ках бло­ков охла­жде­ния XDH, а затем по­сту­па­ет в мо­дуль XDP, где вновь пре­вра­ща­ет­ся в жид­кость в ре­зуль­та­те про­цес­са кон­ден­са­ции. Таким об­ра­зом, ком­прес­си­он­ный цикл, при­сут­ству­ю­щий в тра­ди­ци­он­ных си­сте­мах, ис­клю­ча­ет­ся. Даже если слу­чит­ся утеч­ка жид­ко­сти, эко­ло­ги­че­ски без­вред­ный хо­ло­до­но­си­тель про­сто ис­па­рит­ся, не при­чи­нив ни­ка­ко­го вреда оборудованию.

    Дан­ная схема пред­по­ла­га­ет воз­мож­ность по­этап­но­го ввода обо­ру­до­ва­ния: по мере уве­ли­че­ния мощ­но­сти на­груз­ки уста­нав­ли­ва­ют­ся до­пол­ни­тель­ные до­вод­чи­ки, ко­то­рые под­со­еди­ня­ют­ся к су­ще­ству­ю­щей си­сте­ме тру­бо­про­во­дов при по­мо­щи гиб­ких под­во­док и быст­ро­разъ­ем­ных со­еди­не­ний, что не тре­бу­ет оста­нов­ки си­сте­мы кондиционирования.

    СПЕЦ­ШКА­ФЫ

    Как счи­та­ет Алек­сандр Ша­пи­ро, на­чаль­ник от­де­ла ин­же­нер­ных си­стем «Кор­по­ра­ции ЮНИ», теп­ло­вы­де­ле­ние 18–20 кВт на шкаф — это при­мер­но та гра­ни­ца, когда тепло можно от­ве­сти за ра­зум­ную цену тра­ди­ци­он­ны­ми ме­то­да­ми (с при­ме­не­ни­ем внут­ри­ряд­ных и/или под­по­то­лоч­ных до­вод­чи­ков, вы­го­ра­жи­ва­ния рядов и т. п.). При более вы­со­кой плот­но­сти энер­го­по­треб­ле­ния вы­год­нее ис­поль­зо­вать за­кры­тые сер­вер­ные шкафы с ло­каль­ны­ми си­сте­ма­ми во­дя­но­го охла­жде­ния. Же­ла­ние при­ме­нить для от­во­да тепла от вто­рой груп­пы шка­фов тра­ди­ци­он­ные ме­то­ды объ­яс­ни­мо, но, как пре­ду­пре­жда­ет спе­ци­а­лист «Кор­по­ра­ции ЮНИ», по­яв­ле­ние в зале новых энер­го­ем­ких шка­фов по­тре­бу­ет мон­та­жа до­пол­ни­тель­ных хо­ло­диль­ных машин, из­ме­не­ния кон­фи­гу­ра­ции вы­го­ро­док, кон­тро­ля за из­ме­нив­шей­ся «теп­ло­вой кар­ти­ной». Про­ве­де­ние таких («гряз­ных») работ в дей­ству­ю­щем ЦОДе не це­ле­со­об­раз­но. По­это­му в ка­че­стве энер­го­ем­ких шка­фов спе­ци­а­ли­сты «Кор­по­ра­ции ЮНИ» пред­ло­жи­ли ис­поль­зо­вать за­кры­тые сер­вер­ные шкафы CoolLoop с от­во­дом тепла водой про­из­вод­ства Knuеrr в ва­ри­ан­те с тремя мо­ду­ля­ми охла­жде­ния (10 кВт каж­дый, N+1). По­доб­ный ва­ри­ант преду­смот­ре­ли и неко­то­рые дру­гие про­ек­ти­ров­щи­ки.

    Ми­ну­сы та­ко­го ре­ше­ния свя­за­ны с по­вы­ше­ни­ем сто­и­мо­сти про­ек­та (CAPEX) и необ­хо­ди­мо­стью за­ве­де­ния воды в сер­вер­ный зал. Глав­ный плюс — в от­лич­ной мас­шта­би­ру­е­мо­сти: уста­нов­ка новых шка­фов не до­бав­ля­ет теп­ло­вой на­груз­ки в зале и не при­во­дит к пе­ре­рас­пре­де­ле­нию тепла, а под­клю­че­ние шкафа к си­сте­ме хо­ло­до­снаб­же­ния За­каз­чик может вы­пол­нять сво­и­ми си­ла­ми. Кроме того, он имеет воз­мож­ность путем до­бав­ле­ния вен­ти­ля­ци­он­но­го мо­ду­ля от­ве­сти от шкафа еще 10 кВт тепла (всего 30 кВт при со­хра­не­нии ре­зер­ви­ро­ва­ния N+1) — фак­ти­че­ски это ре­зерв для роста. На­ко­нец, как утвер­жда­ет Алек­сандр Ша­пи­ро, с точки зре­ния энер­го­сбе­ре­же­ния (OPEX) дан­ное ре­ше­ние яв­ля­ет­ся наи­бо­лее эффективным.

    В про­ек­те «Кор­по­ра­ции ЮНИ» шкафы CoolLoop пред­по­ла­га­ет­ся уста­но­вить в общем сер­вер­ном зале с уче­том прин­ци­па че­ре­до­ва­ния го­ря­чих и хо­лод­но­го ко­ри­до­ров, чем га­ран­ти­ру­ет­ся ра­бо­то­спо­соб­ность шка­фов при ава­рий­ном или тех­но­ло­ги­че­ском от­кры­ва­нии две­рей. При­чем общее кон­ди­ци­о­ни­ро­ва­ние воз­ду­ха в зоне энер­го­ем­ких шка­фов обес­пе­чи­ва­ет­ся ана­ло­гич­но ос­нов­ной зоне сер­вер­но­го зала за одним ис­клю­че­ни­ем — запас хо­ло­да со­став­ля­ет 20–30 кВт. Кон­ди­ци­о­не­ры ре­ко­мен­до­ва­но уста­но­вить в от­дель­ном по­ме­ще­нии, смеж­ном с сер­вер­ным залом и залом раз­ме­ще­ния ИБП (см. Рисунок 7). Такая ком­по­нов­ка имеет ряд пре­иму­ществ: во-пер­вых, тем самым раз­гра­ни­чи­ва­ют­ся зоны от­вет­ствен­но­сти служ­бы кон­ди­ци­о­ни­ро­ва­ния и ИТ-служб (со­труд­ни­кам служ­бы кон­ди­ци­о­ни­ро­ва­ния нет необ­хо­ди­мо­сти за­хо­дить в сер­вер­ный зал); во-вто­рых, из зоны раз­ме­ще­ния кон­ди­ци­о­не­ров обес­пе­чи­ва­ет­ся по­да­ча/забор воз­ду­ха как в сер­вер­ный зал, так и в зал ИБП; в-тре­тьих, со­кра­ща­ет­ся число ре­зерв­ных кон­ди­ци­о­не­ров (ре­зерв общий).

    5138

    ФРИ­КУ­ЛИНГ И ЭНЕРГОЭФФЕКТИВНОСТЬ

    Как и про­сил За­каз­чик, все про­ек­ти­ров­щи­ки вклю­чи­ли функ­цию фри­ку­лин­га в свои ре­ше­ния, но мало кто рас­счи­тал энер­ге­ти­че­скую эф­фек­тив­ность ее ис­поль­зо­ва­ния. Такой рас­чет про­вел Ми­ха­ил Бал­ка­ров из APC by Schneider Electric. Вы­де­лив три ре­жи­ма ра­бо­ты си­сте­мы охла­жде­ния — с тем­пе­ра­ту­рой гли­ко­ле­во­го кон­ту­ра 22, 20 и 7°С (режим фри­ку­лин­га), — для каж­до­го он ука­зал ее по­треб­ле­ние (в про­цен­тах от по­лез­ной на­груз­ки) и ко­эф­фи­ци­ент энер­ге­ти­че­ской эф­фек­тив­но­сти (Energy Efficiency Ratio, EER), ко­то­рый опре­де­ля­ет­ся как от­но­ше­ние хо­ло­до­про­из­во­ди­тель­но­сти кон­ди­ци­о­не­ра к по­треб­ля­е­мой им мощ­но­сти. Для на­груз­ки в 600 кВт сред­не­го­до­вое по­треб­ле­ние пред­ло­жен­ной АРС си­сте­мы охла­жде­ния ока­за­лось рав­ным 66 кВт с функ­ци­ей фри­ку­лин­га и 116 кВт без та­ко­вой. Раз­ни­ца 50 кВт в год дает эко­но­мию 438 тыс. кВт*ч.

    Объ­яс­няя вы­со­кую энер­го­эф­фек­тив­ность пред­ло­жен­но­го ре­ше­ния, Ми­ха­ил Бал­ка­ров от­ме­ча­ет, что в первую оче­редь эти по­ка­за­те­ли обу­слов­ле­ны вы­бо­ром чил­ле­ров с вы­со­ким EER и при­ме­не­ни­ем эф­фек­тив­ных внут­рен­них бло­ков — по его дан­ным, внут­ри­ряд­ные мо­де­ли кон­ди­ци­о­не­ров в со­че­та­нии с изо­ля­ци­ей го­ря­че­го ко­ри­до­ра обес­пе­чи­ва­ют при­мер­но дву­крат­ную эко­но­мию по срав­не­нию с наи­луч­ши­ми фаль­шполь­ны­ми ва­ри­ан­та­ми и по­лу­то­ра­крат­ную эко­но­мию по срав­не­нию с ре­ше­ни­я­ми, где ис­поль­зу­ет­ся кон­тей­не­ри­за­ция хо­лод­но­го ко­ри­до­ра. Вклад же соб­ствен­но фри­ку­лин­га вто­ри­чен — имен­но по­это­му ра­бо­чая тем­пе­ра­ту­ра воды вы­бра­на не самой вы­со­кой (всего 12°С).

    По рас­че­там спе­ци­а­ли­стов «Ком­плит», в усло­ви­ях Мос­ков­ской об­ла­сти пред­ло­жен­ное ими ре­ше­ние с функ­ци­ей фри­ку­лин­га за год поз­во­ля­ет сни­зить рас­ход элек­тро­энер­гии при­мер­но на 50%. Дан­ная функ­ция (в про­ек­те «Ком­плит») ак­ти­ви­зи­ру­ет­ся при тем­пе­ра­ту­ре около +7°С, при по­ни­же­нии тем­пе­ра­ту­ры на­руж­но­го воз­ду­ха вклад фри­ку­лин­га в хо­ло­до­про­из­во­ди­тель­ность будет воз­рас­тать. Пол­но­стью си­сте­ма вы­хо­дит на режим эко­но­мии при тем­пе­ра­ту­ре ниже -5°С.

    Спе­ци­а­ли­сты «Ин­же­нер­но­го бюро ’’Хос­сер‘‘» пред­ло­жи­ли рас­чет эко­но­мии, ко­то­рую дает при­ме­не­ние кон­ди­ци­о­не­ров с функ­ци­ей фри­ку­лин­га (мо­дель ALD-702-GE) по срав­не­нию с ис­поль­зо­ва­ни­ем устройств, не осна­щен­ных такой функ­ци­ей (мо­дель ASD-802-A). Как и про­сил За­каз­чик, рас­чет при­вя­зан к Мос­ков­ско­му ре­ги­о­ну (см. Рисунок 8).

    5139

    Как от­ме­ча­ет Вик­тор Гав­ри­лов, энер­го­по­треб­ле­ние в лет­ний пе­ри­од (при мак­си­маль­ной за­груз­ке) у фре­о­но­вой си­сте­мы ниже, чем у чил­лер­ной, но при тем­пе­ра­ту­ре менее 14°С, энер­го­по­треб­ле­ние по­след­ней сни­жа­ет­ся, что обу­слов­ле­но ра­бо­той фри­ку­лин­га. Эта функ­ция поз­во­ля­ет су­ще­ствен­но по­вы­сить срок экс­плу­а­та­ции и на­деж­ность си­сте­мы, так как в зим­ний пе­ри­од ком­прес­со­ры прак­ти­че­ски не ра­бо­та­ют — в связи с этим ре­сурс ра­бо­ты чил­лер­ных си­стем, как ми­ни­мум, в пол­то­ра раза боль­ше чем у фреоновых.

    К пре­иму­ще­ствам пред­ло­жен­ных За­каз­чи­ку чил­ле­ров Emerson Вик­тор Гав­ри­лов от­но­сит воз­мож­ность их объ­еди­не­ния в еди­ную сеть управ­ле­ния и ис­поль­зо­ва­ния функ­ции кас­кад­ной ра­бо­ты хо­ло­диль­ных машин в ре­жи­ме фри­ку­лин­га. Более того, раз­ра­бо­тан­ная ком­па­ни­ей Emerson си­сте­ма Supersaver поз­во­ля­ет управ­лять тем­пе­ра­ту­рой хо­ло­до­но­си­те­ля в со­от­вет­ствии с из­ме­не­ни­я­ми теп­ло­вой на­груз­ки, что уве­ли­чи­ва­ет пе­ри­од вре­ме­ни, в те­че­ние ко­то­ро­го воз­мож­но функ­ци­о­ни­ро­ва­ние си­сте­мы в этом ре­жи­ме. По дан­ным Emerson, при уста­нов­ке чил­ле­ров на 330 кВт режим фри­ку­лин­га поз­во­ля­ет сэко­но­мить 45% элек­тро­энер­гии, кас­кад­ное вклю­че­ние — 5%, тех­но­ло­гия Supersaver — еще 16%, итого — 66%.

    Но не все столь оп­ти­ми­стич­ны в от­но­ше­нии фри­ку­лин­га. Алек­сандр Ша­пи­ро на­по­ми­на­ет, что в нашу стра­ну куль­ту­ра ис­поль­зо­ва­ния фри­ку­лин­га в зна­чи­тель­ной мере при­не­се­на с За­па­да, между тем как по­тре­би­тель­ская сто­и­мость этой опции во мно­гом за­ви­сит от сто­и­мо­сти элек­тро­энер­гии, а на се­го­дняш­ний день в Рос­сии и За­пад­ной Ев­ро­пе цены се­рьез­но раз­ли­ча­ют­ся. «Опция фри­ку­лин­га ощу­ти­мо до­ро­га, в Рос­сии же до­ста­точ­но часто ИТ-про­ек­ты пла­ни­ру­ют­ся с де­фи­ци­том бюд­же­та. По­это­му За­каз­чик вы­нуж­ден вы­би­рать: либо обес­пе­чить пла­ни­ру­е­мые тех­ни­че­ские по­ка­за­те­ли ЦОД путем про­сто­го ре­ше­ния (не думая о про­бле­ме уве­ли­че­ния OPEX), либо «ло­мать копья» в по­пыт­ке до­ка­зать це­ле­со­об­раз­ность фри­ку­лин­га, со­гла­ша­ясь на сни­же­ние па­ра­мет­ров ЦОД. В боль­шин­стве слу­ча­ев выбор де­ла­ет­ся в поль­зу пер­во­го ва­ри­ан­та», — за­клю­ча­ет он.

    Среди пред­ло­жен­ных За­каз­чи­ку более по­лу­то­ра де­сят­ков ре­ше­ний оди­на­ко­вых нет — даже те, что по­стро­е­ны на ана­ло­гич­ных ком­по­нен­тах од­но­го про­из­во­ди­те­ля, имеют свои осо­бен­но­сти. Это го­во­рит о том, что за­да­чи, свя­зан­ные с охла­жде­ни­ем, от­но­сят­ся к числу наи­бо­лее слож­ных, и ти­по­вые от­ра­бо­тан­ные ре­ше­ния по сути от­сут­ству­ют. Тем не менее, среди пред­став­лен­ных ва­ри­ан­тов За­каз­чик на­вер­ня­ка смо­жет вы­брать наи­бо­лее под­хо­дя­щий с уче­том пред­по­чте­ний в части CAPEX/OPEX и пла­нов по даль­ней­ше­му раз­ви­тию ЦОД.

    Алек­сандр Бар­сков — ве­ду­щий ре­дак­тор «Жур­на­ла се­те­вых ре­ше­ний/LAN»

    [ http://www.osp.ru/lan/2010/05/13002554/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > система охлаждения ЦОДа

  • 17 агрегирование

    1. aggregation problem
    2. aggregation

     

    агрегирование
    Объединение, суммирование экономических показателей по какому-либо признаку для получения обобщенных совокупных показателей. При агрегировании необходим учет структуры объединяемых элементов, в ряде случаев требуется анализ возможности и определение весов агрегирования (например при расчете индекса промышленного производства).
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    агрегирование
    1. Соединение независимых частей, обычно выполняющих различные функции, в единую систему. 2. Объединение нескольких низкоскоростных потоков информации в один более высокоскоростной поток. См. channel ~.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    агрегирование
    Объединение, укрупнение показателей по какому-либо признаку для получения обобщенных, совокупных показателей агрегатов. С математической точки зрения А. рассматривается как преобразование модели в модель с меньшим числом переменных и ограничений — агрегированную модель, дающую приближенное (по сравнению с исходным) описание изучаемого процесса или объекта. Его сущность — в соединении однородных элементов в более крупные. Среди способов А.: сложение показателей, представление группы агрегируемых показателей через их среднюю, использование различных взвешивающих коэффициентов (см. Вес), баллов (см. Шкалы) и т.д. Процесс, обратный к А., называется дезагрегированием, реже — разагрегированием, разукрупнением. Некоторыми теоретиками термин «агрегирование» понимается также как переход от микроэкономического к макроэкономическому взгляду на изучаемые экономические явления. В экономико-математических моделях А. необходимо потому, что ни одна модель не в состоянии вместить всего многообразия реально существующих в экономике продуктов, ресурсов, связей. Даже крупноразмерные модели, насчитывающие десятки тысяч показателей, и то неизбежно являются продуктом агрегирования. В процессе управления при переходе от низшей ступени к высшей показатели агрегируются, а число их уменьшается. Но при этом часть информации «теряется» (при сведении воедино заказов на материалы, например, уже неизвестно, каких именно марок и размеров они нужны каждому заказчику) и приходится вести расчеты приближенно, на основании статистических закономерностей. Поэтому всегда надо сопоставлять выгоду (от сокращения расчетов) с ущербом, который наносится потерей части информации. Особенно затруднено А. в динамических моделях, поскольку с течением времени меняется соотношение элементов, входящих в укрупненную группу (возникает «структурная неоднородность«). Расхождение между результатами исходной задачи и результатами агрегированной задачи называется ошибкой А. Уменьшение ошибки А. — один из основных критериев, применяемых в теории оптимального агрегирования, разработанной Л.Гурвицем, Е.Малинво, У.Фишером и Дж.Чипмэном. А. имеет большое значение в методе межотраслевого баланса (МОБ), где оно означает объединение различных производств в отрасли, продуктов — в обобщенные продукты и укрупнение таким путем показателей балансовых расчетов. МОБ обычно оперирует «чистыми отраслями», т.е. условными отраслями, каждая из которых производит и передает другим отраслям один агрегированный продукт. Количество их ограничивается вычислительными возможностями и некоторыми обстоятельствами математического характера, однако, в принципе, чем больше детализация МОБ, тем лучше он отражает действительность, тем точнее расчеты по нему. А. в МОБ возможно двух типов — вертикальное и горизонтальное. Первое означает объединение продукции по технологической цепочке. Например, в соответствии с этим принципом в одну группу могут быть объединены железная руда, чугун, сталь, прокат (тогда отрасль дает потребителям один продукт — прокат), в другую — пряжа, суровая ткань, готовая ткань, в третью — целлюлоза, бумажное производство. При этом все показатели, прежде всего затраты, относятся на избранную единицу агрегированного продукта (в данных примерах — это тонна готового проката, 1 млн. кв. м готовой ткани, тонна бумаги). Выбрать правильное объединение сложно, поскольку та же сталь может отпускаться потребителям (для литейных производств) не в виде проката, а в виде слитков, целлюлоза может поступать не только на бумажные комбинаты, но и на заводы искусственного волокна, где из нее делают вискозную пряжу, и т.д. При горизонтальном А. в одну группу объединяются, например, продукты, сходные между собой либо по экономическому назначению (различные виды зерна, топлива), либо по техническим условиям производства. Это связано, однако, с дополнительными трудностями. Логично объединить в одну группу всю электроэнергию, но структура затрат на ее производство на тепловых и гидравлических станциях в корне различна. Любой сдвиг в соотношениях внутри такой объединенной отрасли резко скажется на ее показателях, необходимых для расчета. Наиболее рациональные способы А. отраслей и продуктов определяются путем экономико-математических расчетов. Основным инструментом агрегирования почти во всех экономических расчетах являются цены.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    3.2 агрегирование (aggregation): Процесс или результат объединения конструкций языка моделирования и других компонентов модели в единое целое.

    Примечание - Конструкции языка моделирования и другие компоненты модели могут быть агрегированы в более чем один объект.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > агрегирование

  • 18 ген

    Материальный носитель наследственности; единица наследственной ( генетической) информации, способная к воспроизведению и расположенная в определённом локусе данной хромосомы; ген обеспечивает преемственность в поколениях того или иного признака или свойства организма; в химическом отношении ген соответствует участку молекулы ДНК или РНК ( у вирусов и фагов), включающему от нескольких десятков до 1000-1500 нуклеотидов и определяющему структуру одного белка или одной полипептидной цепи (см. также полипептид).

    Набор генов, кодирующих информацию, необходимую для образования ферментов и других белков, связанных с фиксацией атмосферного азота.

    1) Увеличение числа копий специфичного гена в данной клетке.

    2) Временное большое увеличение числа копий гена в течение отдельного периода развития.

    Состояние, обусловленное гармоничной совокупностью генов в геноме.

    Коллекция клеточных культур, семян, замороженной спермы и т. д., создаваемая с целью сохранения геномов определённых типов организмов.

    Несистематизированная коллекция клонированных фрагментов в ряде векторов одного происхождения, которая в идеале содержит всю генетическую информацию о данном виде; иногда библиотеку генов называют shot-gun collection.

    Гены, не имеющие самостоятельного действия, но контролирующие действие других генов.

    выражение гена — expressivity of а gene, gene expression

    Степень проявления генетического эффекта у тех индивидов, у которых он обнаруживается.

    Ген, чьё действие подавляется действием другого неаллельного гена.

    Гены с четким фенотипическим проявлением.

    Гены, контролирующие один и тот же признак.

    Различные гены, оказывающие сходное воздействие на развитие одного и того же признака.

    Изменение генетической структуры популяции, вызванное случайными причинами (например, малыми размерами популяции).

    Образованная in vitro двухцепочечная молекула ДНК, несущая специфическую последовательность, которая кодирует данную аминокислотную последовательность.

    Локализованные в локусах хромосомы группы различных генов с родственными функциями.

    Два гена, дающие сходные эффекты в отдельности, а их совместное действие вызывает эффект, качественно отличный от действия каждого из них в отдельности.

    Редко встречающееся нарушение копирования при удвоении генов.

    Количество в популяции хромосом, содержащих определённый аллель какого-либо гена.

    Ген с неизвестным фенотипическим проявлением, обнаруживаемый лишь косвенными методами.

    Скрытый рецессивный наследственный фактор.

    Ген, который при своем проявлении вызывает гибель индивида на той или иной стадии его развития.

    Ген с нечётким выражением признака.

    Ген известной локализации и эффекта, дающий возможность локализовать другие гены.

    Ген, не проявляющий непосредственного действия, но влияющий на проявление или действие другого гена.

    Ген, подверженный частым мутациям.

    Ген, повышающий скорость мутации других генов в одном организме.

    Гены, транскрипция которых, как и у прокариот, не связана с транскрипцией других генов в рамках транскрипционной единицы. Их активность может, однако, регулироваться экзогенными веществами, например, гормонами.

    Гены, участвующие в симбиозе Rhizobium и бобовых, представляющем собой одну из наиболее эффективных азотфиксирующих систем.

    Структурный ген, имеющийся в опероне, который регулирует синтез белка.

    Гомологичные гены, дифференцированные в различных видах – потомках одного вида.

    Наличие в одном и том же участке последовательности ДНК информации о двух различных белках, трансляция которых осуществляется сдвиганием рамки считывания только одним или двумя нуклеотидами.

    Процесс передачи признаков, происходящий у эукариотных организмов при оплодотворении. У бактерий известны три типа передачи признаков: конъюгация, трансдукция и трансформация; возможен искусственный перенос генов в результате генетических манипуляций, основанных на достижениях генной инженерии.

    Гены, присутствующие в хромосоме в виде повторов одного гена.

    Различные гены, оказывающие сходное воздействие на развитие одного и того же признака.

    Ген, который не вызывает немедленной гибели особи, а только снижает её жизнеспособность.

    Введение новых генов в популяцию из внешнего источника с помощью интербридинга, что позволяет повысить степень генетической изменчивости.

    Ген вируса, проявляющийся до синтеза вирусной нуклеиновой кислоты.

    Распространение генов, проникших в популяцию в результате внешнего скрещивания, на фоне последующего скрещивания внутри популяции.

    1) Ген, регулирующий или модифицирующий активность других генов.

    2) Ген, кодирующий аллостерический белок, который ( один или в комбинации с корепрессором) регулирует генетическую транскрипцию структурных генов в опероне, связываясь с оператором.

    Ген, продуктом которого является фермент рестрикции.

    Ген, чья экспрессия частично или полностью подавляется в присутствии доминантного гена.

    Синтез последовательностей оснований в участке ДНК, которые после встраивания в клетку хозяина могут экспрессироваться в виде пептидов.

    Ген, кодирующий полипептид.

    ген супрессор — suppressor, gene-suppressor

    Генетический фактор, который сам по себе не влияет на внешние признаки, но подавляет действие других доминантных факторов.

    Гены, находящиеся на одной и той же хромосоме в ядре, клетке или организме.

    Ген, кодирующий фермент, обеспечивающий лекарственную устойчивость клетки. Обычно такой фермент гидролизует лекарственное средство или модифицирует его структуру.

    Частота, с которой данная аллель встречается в пределах данной популяции.

    Ген, не экспрессирующийся, если температура окружающей среды понижается ( повышается) до уровня ниже ( выше) специфического предела.

    химерный ген — chimeric gene, hybrid gene, recombinant gene

    Искусственный ген, полученный комбинацией носледовательностей ДНК из нескольких различных источников.

    Синтез нормального, полного и функционального полипептида или белка из соответствующего гена. Этот процесс зависит от точности транскрипции и трансляции, а также во многих случаях от послетрансляционного процессинга и компартментализации насцентного полипептида. Неправильное проведение любого из этих процессов может нарушить экспрессию гена.

    Русско-английский словарь терминов по микробиологии > ген

  • 19 внутренняя норма доходности

    1. irr
    2. internal rate of return

     

    внутренняя норма доходности
    внутренняя ставка доходности
    внутренняя ставка отдачи

    Один из основных критериев оценки инвестиционных проектов (доходности единицы вложенного капитала) - ставка дисконта, при которой выполняется равенство суммы дисконтированных доходов по проекту (положительного денежного потока) дисконтированной сумме инвестиций (отрицательному денежному потоку), т.е. чистая приведенная стоимость (NPV) равна нулю. В.н.д. отражает как отдачу инвестированного капитала в целом, так и отдачу первоначальных инвестиций, является основным вознаграждением потенциальных инвесторов. Главное правило: если В.н.д. меньше требуемой инвесторами ставки дохода на вложенный капитал, проект отвергается, если больше - может быть принят.
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    внутренняя норма доходности
    IRR
    Иногда называется также внутренней нормой прибыли, рентабельности, возврата инвестиций; один из основных критериев оценки инвестиционных проектов (доходности единицы вложенного капитала) - ставка дисконта, при которой выполняется равенство суммы дисконтированных доходов по проекту (положительного денежного потока) дисконтированной сумме инвестиций (отрицательному денежному потоку, приведенному объему инвестиций), т. е. чистая приведенная стоимость (NPV) равна нулю. В.н.д. отражает как отдачу инвестированного капитала в целом, так и отдачу первоначальных инвестиций, является основным вознаграждением потенциальных инвесторов. Анализ В.н.д. (прибыли) отвечает на главный вопрос размещения капиталов: насколько ожидаемый от проекта денежный поток оправдает затраты на инвестиции в этот проект. Поэтому компании рассчитывают ожидаемый IRR каждого проекта и сравнивают с требуемой нормой прибыли (рентабельности), т. е. со стоимостью своего капитала. Этот расчет обычно ведется методом проб и ошибок, путем последовательного применения к чистому денежному потоку приведенных стоимостей при различных ставках процента. Главное правило: если В.н.д. меньше требуемой инвесторами ставки дохода на вложенный капитал — проект отвергается, если больше — может быть принят. То же: Внутренняя ставка доходности, Внутренняя ставка отдачи. См. также Коэффициент окупаемости капитальных вложений.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > внутренняя норма доходности

  • 20 Harmonized Commodity Description and Coding System

    Гармонизированная система описания и кодирования товаров.
    Международный классификатор товаров, предназначенный для использования странами при разработке таможенного тарифа и ведения статистического учета внешнеторговых операций. Совет таможенного сотрудничества в 1973 создал Комитет по разработке Гармонизированной системы описания и кодирования товаров на основе Брюссельской таможенной номенклатуры, стандартной международной торговой классификации ООН и других международных классификаторов. К началу 1981 Комитет завершил возложенную на него работу. Совет таможенного сотрудничества в 1983 принял проект Международной конвенции по Гармонизированной системе и объявил ее открытой для подписания как странами-членами Совета, так и всеми другими государствами мира, желающими к ней присоединиться. Конвенция вступила в силу с 1 января 1988. Основные классификационные признаки Гармонизированной системы - степень обработки продукта и изделия, вид материала, потребительское свойство товара, значение его для мировой торговли. Весь товарный поток международной торговли в соответствии с классификационными положениями Гармонизированной системы объединен в шесть подразделов и двадцать один раздел. В каждом разделе выделяются группы, подгруппы, позиции, субпозиции. Гармонизированная система распространяется только на товары, которые подлежат таможенному контролю и рекомендованы для включения в объемы экспорта и импорта видимых и движимых товаров. Услуги, покупаемые у других стран или продаваемые за границу, не могут быть объектом таможенного досмотра, поэтому таможенной статистикой они не учитываются. Объем их экспорта и импорта учитывается лишь при составлении платежного баланса (balance of payments).

    English-Russian explanatory dictionary of the external economic terms > Harmonized Commodity Description and Coding System

См. также в других словарях:

  • Поток выполнения — Для термина «Поток» см. другие значения. Процесс с двумя потоками выполнения на одном процессоре Поток выполнения (анг …   Википедия

  • ПОТОК — ПОТОК, потока, муж. 1. Стремительно текущая водная масса река, ручей с сильным течением. Горный поток. Потоки дождя размыли дорогу. «С горы бежит поток проворный.» Тютчев. || перен. О чем нибудь текущем, исходящем откуда нибудь в большом… …   Толковый словарь Ушакова

  • поток сознания — 1. Модель сознания, предложенная американским психологом У. Джемсом, в коей сознанию приписываются свойства непрерывности, целостности и изменчивости. Альтернативна предложенной В. Вундтом и Э. Титченером трактовке сознания как набора… …   Большая психологическая энциклопедия

  • ПОТОК ГЕНОВ — обмен генами между популяциями благодаря рассеиванию гамет и зигот; поток генов представляет собой один из ведущих механизмов эволюции (микроэволюции). См. также Генетический дрейф. Экологический энциклопедический словарь. Кишинев: Главная… …   Экологический словарь

  • "поток сознания" — способ повествования, имитирующий работу человеческого сознания и подсознания. В отличие от родственного ему внутреннего монолога, так или иначе организующего и упорядочивающего ход мыслей и переживаний, поток сознания предполагает… …   Литературная энциклопедия

  • ПОТОК — понятие интуиционистской математики (см. Интуиционизм);совокупность, вид, состоящий из конечных кортежей натуральных чисел, называемых узлами П. (или допустимыми кортежами П.). Точнее, вид П кортежей натуральных чисел наз. потоком, если… …   Математическая энциклопедия

  • Северный поток — (Nord Stream) Определение Северного потока, значение Северного потока Определение Северного потока, значение Северного потока, маршрут Северного потока Содержание Содержание Определение Реализация проекта Значение проекта Статус TEN… …   Энциклопедия инвестора

  • Северный поток — У этого термина существуют и другие значения, см. Nord Stream …   Википедия

  • Южный поток — Магистральный газопровод, который должен пройти по дну Черного моря и связать Россию со странами Центральной и Южной Европы Проект строительства газового трубопровода, который свяжет Россию со странами Центральной и Южной Европы: Болгарией,… …   Энциклопедия ньюсмейкеров

  • Северный поток — Магистральный газопровод, связывающий Россию и Германию по дну Балтийского моря Магистральный газопровод, связывающий Россию и страны центральной Европы по дну Балтийского моря в обход транзитных государств: Белоруссии, Польши и других… …   Энциклопедия ньюсмейкеров

  • Цифровой поток E1 — Запрос «E1» перенаправляется сюда; см. также другие значения. Е1  это цифровой поток передачи данных, соответствующий первичному уровню европейского стандарта иерархии PDH. В отличие от американской T1, E1 имеет 30 B каналов каждый по 64… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»